什么是大数据征信,与我们理解的传统征信有什么区别?
2020-04-01 来源:壹诺征信
浏览量:271

大数据征信是指运用大数据技术构建征信模型及算法,通过对海量数据进行采集、分析、整合和挖掘,多维度刻画信用主体的违约率和信用状况,形成对信用主体的信用评价。


什么是大数据征信,与我们理解的传统征信有什么区别?


大数据征信的核心是将大数据技术应用到征信活动中,强调处理数据的数量大、刻画信用的维度广、信用状况的动态呈现、交互性等特点。从运行机制上看,大数据征信主要是对征信信息进行自动采集、存储、分析和结果输出,对信用风险进行实时、动态的跟踪和管理,注重对弱相关、非结构化和多维度的海量数据进行深入挖掘和相关分析,力图客观、准确、全面、动态地呈现信息主体的信用状况。


那么,大数据征信作为新生事物,相比传统征信,究竟有哪些优势?央行的征信和个人大数据征信又有什么区别?


与传统征信相比,大数据征信覆盖了更为广泛的人群,数据收集和处理效率有较大提升,在一定程度上避免了人为因素的干扰,防范了可能发生的道德风险,为普惠金融开辟了一条新路径。具体体现在以下几点:


1.覆盖人群广泛性不同

央行征信主要覆盖在持牌金融机构有信用记录的人群。大数据征信通过大数据技术捕获传统征信没有覆盖的人群,利用互联网留痕协助信用的判断,满足P2P网络借贷、第三方支付及互联网保险等互联网金融新业态身份识别、反欺诈、信用评估等多方面征信需求。


2.应用场景丰富度不同

大数据征信将不再单纯地用于经济金融活动,还可将应用场景从经济金融领域扩大到日常化、生活化的方方面面,如租房租车、预订酒店、签证、婚恋、求职就业、保险办理等各种需要信用履约的生活场景,在市场营销支持、反欺诈、贷后风险监测与预警和账款催收等方面具有良好的应用表现。


3.信息维度多元度不同

在互联网时代,大数据征信的信息数据来源更广泛,种类更多样。大数据征信数据不再局限于金融机构、政府机构以及电信提供的个人基本信息、账单信息、信贷记录、逾期记录等,还引入互联网行为轨迹记录、社交和客户评价等数据。这些数据在一定程度上可以反映信息主体的行为习惯、消费偏好以及社会关系,有利于全面评估信息主体的信用风险。


4.信用评估程度不同

大数据征信的数据来源不止包括传统征信的信贷历史数据,还包括个人的消费行为、交易行为、人际关系等半结构化数据。网购消费能力、共享单车租借、社交好友的信用状况、生活缴费都成为了大数据信息采集的来源,能够多维度地反应一个人的信用状况。


伴随着大数据技术的“侵入”,人们生活中的“一切数据皆信用”正在成为现实,在悄然改变着人们对信用的认识和理解的同时,也在重塑着征信的基础规则。大数据征信在服务经济社会发展的同时,其实更需保障和尊重个人隐私,保护个人“退出公共生活和公众视线”的自由。


部分素材源自网络,旨在传递分享,如有侵权请及时联系处理。


联系我们
客服热线
400-056-8999
公司地址
湖南省长沙市天心区芙蓉南路三段29号中信凯旋蓝岸16栋2层
商务合作
bd@inuol.com
客服邮箱
service@inuol.com
工作时间 09:00 - 18:00 (工作日)
官方微信