登录 申请

在线客服

返回顶部

当前位置: 关于我们 > 新闻动态 > 信用风险评估模型是如何构建的?

信用风险评估模型是如何构建的?

2018-11-07 来源:壹诺科技

通常来讲,构建信用风险包含三个层面的内容,一是反欺诈,提升资产质量,降低资产内部关联性;二是客户群分层分类,降低整体样本方差;三是产品定价,落实风险偏好要求和收益覆盖损失原则。下面壹诺科技为大家详细讲解。

对于第一层面,其包含反欺诈和降低资产内部关联性两部分内容。反欺诈,或称反信息欺诈,主要通过多信息源交叉校验、信息自洽校验等分析模型来验证借款人提供信息的真伪性,简单来说就是从借款人本人外的多个渠道收集借款人信息,进而分析借款人提供的信息是否全面、是否存在隐瞒信息或提供虚假信息的问题,对造假问题突出且情节恶劣的借款人则直接筛选掉,提升贷款整体质量。降低资产内部关联性,主要是通过人群关系网络、小微企业集群等图计算模型发现具有高度关联性的借款。

信用风险评估

(图源摄图网)


第二层面客户群分层分类,是目前信用风险评估模型中内容最丰富的部分,其主要目的是根据用户特征,包括客户自行提供的信息、征信信息和金融机构在前文提到的过程中收集的其他外部信息,对客户群进行风险等级分类,使每个客户群的风险等级分布更加集中,或者通俗地说,就是让好客户分成一群,让坏客户也分成一群,不同层级的客户区别管理。

第三层面产品定价,是信用风险评估模型最核心最重要的部分,也是决定评估模型最终是否能够为金融机构带来盈利的部分。金融机构需要对不同层级的客户群,根据历史借还款信息建立相应的贷款损失分布,并根据损失分布确定一个合理定价水平,这个定价既要满足“收益覆盖损失”的要求,又要对该层级的客户群具有足够的吸引力。

作为一款信贷管理工具,壹诺科技主要是运用大数据技术,将申请材料、不良信用记录和多平台借贷记录等信息加以整合,来实现对用户的信用风险评估。旨在有效识别团伙欺诈、机构代办等高风险行为,帮助信贷机构降低风险、减少资金损失。


分享到: